Support vector machine

Results: 2011



#Item
361Machine learning / Learning / Statistics / Mathematics / Learning to rank / Support vector machine / XQ / Valuation / Supervised learning / Stochastic gradient descent

Efficient Learning of Mahalanobis Metrics for Ranking Daryl K. H. Lim DKLIM @ UCSD . EDU Department of Electrical and Computer Engineering, University of California, San Diego, CAUSA Gert Lanckriet

Add to Reading List

Source URL: acsweb.ucsd.edu

Language: English - Date: 2014-06-16 18:55:07
362Statistics / Econometrics / Prediction / Regression analysis / Statistical forecasting / Scientific modeling / Estimation theory / Linear regression / Support vector machine / Forecasting / Time series / Economic model

PDF Document

Add to Reading List

Source URL: egice2014.engineering.cf.ac.uk

Language: English - Date: 2014-10-03 12:45:14
363

Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 6: Support Vector Machines.

Add to Reading List

Source URL: users.math.uni-potsdam.de

Language: English - Date: 2010-10-28 03:45:49
    364Planetary science / Cartography / RapidEye / Space technology / Satellite imagery / Wetland / Support vector machine / METRIC / Natura / Earth / Remote sensing / Geography

    Towards HorizonLasaponara R., Masini N., Biscione M., Editors EARSeL, 2013 Habitat mapping and monitoring in Alpine regions

    Add to Reading List

    Source URL: www.earsel.org

    Language: English - Date: 2014-01-10 12:13:38
    365Support vector machine / Statistical classification / Category theory / Subcategory

    Fusing Subcategory Probabilities for Texture Classification Yang Song1 , Weidong Cai1 , Qing Li1 , Fan Zhang1 , David Dagan Feng1 , Heng Huang2 1 BMIT Research Group, School of IT, University of Sydney, Australia 2 Depar

    Add to Reading List

    Source URL: www.cv-foundation.org

    Language: English - Date: 2015-05-25 21:19:09
    366Support vector machine / Random forest / Statistics / Statistical classification / Linear classifier

    Food-101 – Mining Discriminative Components with Random Forests Lukas Bossard1 1 Matthieu Guillaumin1

    Add to Reading List

    Source URL: www.vision.ee.ethz.ch

    Language: English - Date: 2014-07-09 13:23:14
    367Parts of speech / Statistical classification / Ensemble learning / Learning classifier system / Classifier / Support vector machine / Chinese classifier / Random subspace method / Machine learning / Statistics / Artificial intelligence

    Comparison of Classifier Selection Methods for Improving Committee Performance Matti Aksela Helsinki University of Technology, Neural Networks Research Centre P.O.Box 5400, FinHUT, Finland

    Add to Reading List

    Source URL: www.cis.hut.fi

    Language: English - Date: 2006-05-30 07:20:10
    368Dimension reduction / Model selection / Computer vision / Feature selection / Support vector machine / Kernel methods / Feature extraction / Training set / Cross-validation / Statistics / Machine learning / Artificial intelligence

    An Introduction to Feature Extraction Isabelle Guyon1 and Andr´e Elisseeff2 1 2 ClopiNet, 955 Creston Rd., Berkeley, CA 94708, USA.

    Add to Reading List

    Source URL: clopinet.com

    Language: English - Date: 2006-10-19 12:27:10
    369Ensemble learning / Bayesian statistics / Neural networks / Supervised learning / Support vector machine / Naive Bayes classifier / Boosting / Random forest / Calibration / Statistics / Machine learning / Statistical classification

    An Empirical Comparison of Supervised Learning Algorithms Rich Caruana Alexandru Niculescu-Mizil Department of Computer Science, Cornell University, Ithaca, NYUSA

    Add to Reading List

    Source URL: www.niculescu-mizil.org

    Language: English - Date: 2008-11-22 14:04:17
    370Statistics / Statistical classification / Functions and mappings / Support vector machine / Convex optimization / Function / Convex function / Locally convex topological vector space / Least squares support vector machine / Convex analysis / Mathematical analysis / Mathematics

    Combining Multi-class SVMs with Linear Ensemble Methods that Estimate the Class Posterior Probabilities Yann Guermeur LORIA-CNRS Campus Scientique, BP 239

    Add to Reading List

    Source URL: www.loria.fr

    Language: English - Date: 2013-06-20 15:49:31
    UPDATE